## M1. Average/mean mass of 1 atom (of an element); (a) (i) Average mass of 1 atom × 12. 1 Mass 1/12 atom of <sup>12</sup>C; Mass 1 atom of 12 C. QWC. 1 (ii) Other isotope = 46.0%; 1 $(54 \times 107.1) + (46 \times ?)$ 100 107.9 =M2 whole expression. 1 108.8; Answer 108.8 (3 marks). Answer min 1 d.p.. 1 Same electronic configuration/ same number of electrons (in outer shell)/ both have 47 electrons; Ignore protons and neutrons unless incorrect. Not just electrons determine chemical properties. 1 (b) Ionisation; 1 high energy electrons fired at sample; Allow electron gun /blasted with electrons. 1 Acceleration; 1 With electric field/accelerating potential/potential difference; Allow by negative plate. 1 Deflection; 1 With electromagnet/ magnet/ magnetic field;

M2 dependent on M1.

1

(c) (Silver) metallic (bonding);

Vdw/molecules CE=0.

1

Regular arrangement of same sized particles;

+ charge in each ion;

Ignore multiple positive charges.

Candidates do not need to show delocalised electrons.

1

(d) Ionic (bonds);

1

Minimum 4 ions shown in 2D square arrangement placed Correctly; Do not allow multiple charges on ions.

1

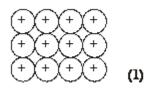
Further 3 ions shown correctly in a cubic lattice;

1

Strong (electrostatic) forces/bonds;

If vdw/molecules/covalent mentioned CE = 0 for M4 and M5.

1


1

Between + and - ions;

Accept between oppositely charged ions.

[20]

**M2.** (a)



(1)

Page 3

|     |                                                                                                                                                                                                                           | [Diagrams must be complete and accurate]                                                                                                                                                                           | 2 |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| (b) | (i)                                                                                                                                                                                                                       | Attraction /electrostatic forces/bonds/attractions between (positive) ions/lattice and delocalised/free electrons/sea of electrons.  [Not metallic bonding]  [Not just 'forces']                                   | 1 |  |
|     | (ii)                                                                                                                                                                                                                      | Electrostatic attractions/forces between ions or attractions between (oppositely charged) ions/ Na <sup>+</sup> & Cl <sup>-</sup> [Not ionic bonding]                                                              | 1 |  |
|     | (iii)                                                                                                                                                                                                                     | (Here) the ionic bonding in NaCl is stronger/requires more energy to break than the metallic bonding in Na                                                                                                         |   |  |
|     | QoL                                                                                                                                                                                                                       | Accept 'bonding/forces of attraction in NaCl is stronger than in Na'  [If IMF/molecules/van der Waals'/dipole–dipole mentioned in parts(i) or (ii), then CE = 0 for parts (i) and/or(ii) and CE = 0 for part(iii)] |   |  |
|     |                                                                                                                                                                                                                           |                                                                                                                                                                                                                    | 1 |  |
| (c) | Comparison: Sodium conducts <b>and</b> sodium chloride does NOT conduct  Allow 'only Na conducts'  Accept 'Na conducts, NaCl only conducts when molten'  [Do not accept sodium conducts better than sodium chloride etc.] |                                                                                                                                                                                                                    |   |  |
|     |                                                                                                                                                                                                                           | anation:                                                                                                                                                                                                           | 1 |  |
|     | (Delocalised) electrons flow though the metal                                                                                                                                                                             |                                                                                                                                                                                                                    |   |  |
|     | Allow e- move/carry current/are charge carriers/transfer charge.  [Not 'electrons carry electricity']  [Not 'NaCl has no free charged particles']                                                                         |                                                                                                                                                                                                                    |   |  |
|     | lons                                                                                                                                                                                                                      | can't move in solid salt                                                                                                                                                                                           | 1 |  |
| (d) | Laye                                                                                                                                                                                                                      | ers can slide over each other – idea that ions/atoms/particles move [Not molecules] [Not layers separate]                                                                                                          | 1 |  |
| (e) | (i)                                                                                                                                                                                                                       | <u>Na</u> <u>Cl</u> <u>O</u><br>Page 4                                                                                                                                                                             |   |  |

0.9(39) 0.9(38) 2.8(2) Hence: 1 1 3

Accept backwards calculation, i.e. from formula to % composition, and also accept route via  $M_{\rm r}$  to 23; 35.5; 48, and then to 1:1:3

[If % values incorrectly copied, allow M1 only]
[If any wrong A values/atomic numbers used = CE = 0]

(ii)  $3CI_2 + 6NaOH \rightarrow 5NaCI + NaCIO_3 + 3H_2O$ 

[12]

1

1

1

**M3**. (a)

| Particle | Relative charge                       | Relative mass       |     |
|----------|---------------------------------------|---------------------|-----|
| Proton   | +1 or 1+                              | 1                   | (1) |
| Neutron  | 0<br><b>or</b> no charge/neutral/zero | 1 ( <u>not</u> – 1) | (1) |
| Electron | –1 or 1–                              | 1/1800 to 1/2000    | (1) |

or negligible

or zero

**or**  $5.0 \times 10^{-4}$  to  $5.6 \times 10^{-4}$ 

if 'g' in mass column - wrong penalise once

3

(b)  $^{38}$  Ar (1)(1)

Allow numbers before or after Ar

2

(c) S: 1s² 2s² 2p⁶ 3s² 3p⁴ **(1)**Allow upper case letters

S<sup>2</sup>: 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> (1)

If use subscript penalise once

2

(d) Block: p (1)
Explanation: Highest energy or outer orbital is (3) p

OR outer electron, valency electron in (3) p

NOT 2p etc.

2

- (e) (i) Bonding in Na<sub>2</sub>S: ionic (1)
  Bonding in CS<sub>2</sub>: covalent (1)
  ignore other words such as dative / polar / co-ordinate
  - (ii) Clear indication of electron transfer from Na to S (1) 1 e<sup>-</sup> from each (of 2) Na atoms or 2 e<sup>-</sup> from 2 Na atoms (1) QoL correct English

(iii)

Correct covalent bonds (1)

All correct including lone pairs (1)

Allow all •s or all ×s

M2 tied to M1

NOT separate e-s in S•- 2 l p

(iv)  $CS_2 + 2H_2O \rightarrow CO_2 + 2H_2S$  (1)

Ignore state symbols even if wrong

7

[16]